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14 Abstract. Ozone (Os) pollution poses an escalating threat to rice production and food security in China, with
15 concentrations projected to rise under future climate scenarios. Accurately quantifying Os impacts on rice is thus
16  crucial for informed agricultural planning. This study is the first to utilise Free Air Concentration Enrichment
17 (FACE) observations specific to rice for calibrating a crop model (JULES-crop) and assessing the impacts of Os.
18 FACE experiments, which involve growing crops under natural field conditions while exposing them to elevated
19 Os levels, provide an ideal approach for studying the effects of Os on crops. Utilising data from the only Os-FACE
20 facility dedicated to rice, we calibrated physiological and Os-response parameters in JULES-crop and evaluated
21 the model against additional independent FACE observations. The calibration establishes this as the first crop
22 model refined with ideal open-air field observations, significantly enhancing its capability to simulate rice growth
23 processes and Os-induced yield losses, surpassing the performance of simulations based on the default parameters
24 in JULES-crop. With this newly calibrated model, JULES-crop is now equipped to assess the impacts of Os on

25 agriculture, offering a valuable tool to inform mitigation strategies.
26
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1 1 Introduction

Rice is the primary energy source for over half of the world’s population and plays a crucial role in global food
security. The rising concentration of ozone (Os) is a major concern, contributing to significant losses in crop
production worldwide (Van Dingenen et al., 2009). Mills et al. (2018) estimated that the average global yield loss
of rice due to Os was 4.4% between 2010 and 2012. In China, Os caused relative rice yield losses of 6.2-52.9%
between 2014 and 2018, and 23% between 2017 and 2019 (Feng et al., 2022; Xu et al., 2021). Consequently,

assessing the impact of Os on rice growth is essential, especially as Os-polluted areas overlap with crop-growing
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regions and pose a long-term threat to food security (Emberson et al., 2018).

9 The main Os dose-response functions used to assess rice yield loss include concentration-based methods, such as
10 the accumulated dose of Os over 40 ppb (AOT40) and the daily mean seven-hour concentrations (M7), and flux-
11 based methods, such as the phytotoxic Os dose (POD) (Tai et al., 2021). Both concentration-based and flux-based
12 methods can establish a relationship with relative yield loss based on field experiments. The relationship between
13 relative yield loss and O; level, known as the Os response function, is a valuable tool that underpins extensive

14 research into crop yield losses caused by Os exposure (Ramya et al., 2023).

15 Some crop models have incorporated Os parameters to better understand its impacts (Guarin et al., 2024; Leung
16 et al., 2020; Ewert and Porter, 2000). For instance, the Decision Support System for Agrotechnology Transfer
17 (DSSAT) crop model established an Os stress factor using the M7 metric (Guarin et al., 2024). GLAM-ROC
18 simulated ozone effects by reducing evapotranspiration, transpiration efficiency, and harvest index based on
19 AOT40 metric (Droutsas et al., 2020). The Joint UK Land Environment Simulator with crops (JULES-crop)
20 integrated a flux-based Os damage scheme developed by Sitch et al. (2007) to assess reductions in net
21 photosynthesis. Compared with concentration-based methods, flux-based methods demonstrate better
22 performance in correlating Os levels with relative yield loss, leading to more accurate assessments (Pleijel et al.,
23 2004; Pleijel et al., 2022; Mills et al., 2011; Ronan et al., 2020). Nonetheless, Os-related parameters in crop models

24 require calibration to ensure reliable performance, even when using a flux-based Os scheme.

25 Open-top chambers (OTC) and free air concentration enrichment (FACE) experiments are two major methods
26 used to help calibrate parameters in crop models. State-of-the-art FACE experiments, which provide more natural
27 environments for crops, are ideal for establishing Os exposure metrics and investigating the impacts of Os on crops
28 (Montes et al., 2022; Feng et al., 2018). To date, only four Os-FACE facilities have been established for crops
29  worldwide (Montes et al., 2022): wheat and rice experiments in China (Tang et al., 2011), wheat experiments in
30 India (Yadav et al., 2019), grape experiments in Italy (Moura et al., 2023), and soybean experiments in the United
31 States (Aspray et al., 2023). However, the rice-specific Os-FACE experiment has not yet been used to calibrate

32 any crop models.

33 The parameterisation of crops in JULES was developed by Osborne et al. (2015). JULES-crop incorporates flux-
34 based Os exposure metrics to analyse the loss of accumulated carbon based on the exact Os flux entering the crop
35 stomata, which is influenced by environmental conditions (Sitch et al., 2007). The impact of Os on crops is also
36  reflected in reductions in crop height, leaf area index (LAI), and crop yields. Additionally, Tai et al. (2021)
37 highlighted that mechanistic crop models such as JULES-crop can combine the fertilisation effects of atmospheric

38  carbon dioxide (CO2) with the Os influence. Thus, JULES-crop is a suitable tool for investigating the effects of
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Os on crops, accounting for environmental factors that modify the mechanisms of O; effects (Leung et al., 2022).
However, the crop growth and development parameters for rice, as well as the Os impact parameters within

JULES-crop, have not yet been calibrated. Calibrating JULES-crop would enhance its performance in simulating
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rice production under Os influence.

In this research, we calibrated the rice parameters in JULES-crop using novel Os-FACE data, enabling leading-
edge future assessments of Os damage to rice. The study has three key objectives: (1) to calibrate JULES-crop
using novel Os-FACE field data; (2) to evaluate the model’s performance in capturing crop growth characteristics
using independent observations; and (3) to assess the impact of Os on rice physiology, phenology, and yields. This

research enhances understanding of the mechanisms through which Os affects rice growth and development,
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providing a stronger basis for characterising the future impact of Os on rice production.

11 2 Method
12 2.1 Description of the JULES-crop

13 JULES-crop is an extension of JULES, a land surface model designed to simulate the fluxes of carbon, water,
14 energy, and momentum between the land surface and the atmosphere (Best et al., 2011; Clark et al., 2011). JULES-
15 crop was developed to simulate the growth and development of major crops, including wheat, soybean, maize,
16 and rice, under a range of environmental influences such as temperature, precipitation, radiation, and soil moisture
17 (Osborne et al., 2015). Its structure, illustrated in Fig. 1, incorporates the physiological processes of crops,

18 including photosynthesis, respiration, and biomass accumulation.

19 JULES-crop simulates the physiological and phenological processes of crops, predicting yields at both field and
20 global scales. This capability makes it a valuable tool for understanding the impacts of climate change and air
21 pollution on agriculture (Leung et al., 2022; Wolffe et al., 2021; Vianna et al., 2022). To date, winter wheat (in
22 preparation), maize (Williams et al., 2017), and soybean (Leung et al., 2020) within JULES-crop have been
23 calibrated using observational data. Mathison et al. (2021) updated several rice and wheat parameters in JULES-
24 crop, relying primarily on literature, but did not account for Os effects. In this study, novel Os-FACE experimental
25 data was utilised to calibrate rice parameters in JULES-crop for the first time, improving its ability to assess O3

26 impacts on rice growth.
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28 Figure 1. Schematic of JULES-crop.
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1 2.2 03-FACE experiments

The Os-FACE experiment was conducted in Xiaoji, China (32°35°5"N, 119°42'0"E) in 2012. It features four
regular octagonal Os-FACE fields (14 m in diameter) and four control fields, each covering an area of
approximately 120 m?. The experimental fields are spaced over 70 m apart to minimise the influence of Os release
on neighbouring fields. Pipes positioned 50-60 cm above the crops released pure Os gas into each Os-FACE field
between 09:00 and 16:00 during the rice growing period. Os concentrations were 25% higher than those in the
control fields throughout the growing period. The environmental conditions in the Os-FACE and control fields

were identical, except for the presence of O pipes in the Os-FACE fields. Samples from the Os-FACE fields were
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collected from the field centre, at least 1.5 m away from the Os pipes, to ensure that the sampled rice had grown
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under stable Os conditions. Further details of the Os-FACE system can be found in Wang et al. (2012).

11 The rice cultivar used was II You 084. The rice was planted on 30th May 2012 and reached maturity on 19th
12 October 2012 in the ambient Os environment and 12th October 2012 in the elevated Os environment. During the
13 growth period, key developmental stages, such as jointing and flowering, were recorded, and crop growth
14 characteristics—including dry biomass of leaves, stems, and panicles, leaf area index, and plant height—were

15 measured at these stages to calibrate the model.

16 Three planting densities were employed during transplantation: low density (16 plants m2), medium density (24
17 plants m2), and high density (32 plants m2). In addition to standard growth measurements, photosynthesis-related
18 variables—including leaf temperature, internal leaf CO- concentration, stomatal conductance, and photosynthesis
19 rate (CO: assimilation rate)—were assessed using a LI-6400 portable photosynthesis system. After the rice
20  reached maturity, 64 plants from each experimental field were harvested and dried to calculate the average rice

21 yields.

22 2.3 FACE experiment for JULES-crop evaluation

23 Following calibration, observations of rice yields, height, and the dry weight of leaves, stems, and panicles from
24 an independent FACE experiment were then used to evaluate the performance of JULES-crop. These additional
25 field experiments were conducted in Danyang, China (31°54'31"N, 119°28'21"E), and provided rice data for the
26 2022 and 2023 growing seasons. Two cultivars, Yangdao 6 and Wuyungeng 23, were transplanted on 20th July
27 2022 and 21st July 2023, respectively, and harvested between late October and early November. Yangdao 6 is an
28 Indica rice cultivar, while Wuyungeng 23 belongs to the Japonica subspecies group, both of which represent the

29  two major rice subspecies cultivated in China.

30 2.4 Data preparation

31 JULES-crop requires driving data, ancillary data, and control files to configure the model. Observations of hourly
32 air pressure, specific humidity, air temperature, precipitation, wind speed, and shortwave radiation (SW) recorded
33 during the Os-FACE experiments were used as driving data. Diffuse radiation was calculated using a constant
34 diffuse fraction in the model, with the default value of 0.4 applied in this study due to the absence of observational
35 data. Surface downward longwave radiation (LW) was not measured in the Os-FACE experiment and was instead

36 estimated using an empirical model based on local observations (Chang and Zhang, 2019):
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1 Rl:J-(Ta)“-clf+(1—clf)-(a-ln(;—:)+b-<p+c>]

2 where R is the downward LW under all kinds of sky (clear and cloudy), T, is the air temperature; e, is the water
vapour pressure; ¢ is the relative humidity; o is the Stefan-Boltzmann constant; a, b, and ¢ are the empirical

4 coefficients (Table 1); and clf is the cloud modification factor, set to 0 under clear sky conditions:
5 cf =1-K,
6  where K, is the clearness index which was calculated as follows:

H,

m

7 K, =—
T H,

8  where H,, represents the hourly measured solar radiation, and H,, denotes the hourly extraterrestrial solar radiation.

9  Detailed calculation for H, can be found in Kumar and Umanand (2005).

10 Table 1 Empirical coefficients used in the longwave radiation model.

Period a b c
Daytime with the cloud impact 0.118 0 1.033
Nighttime 0.08 0.0014 1.026

12 For the ancillary data, soil property values were extracted from the ancillary dataset used in the HadGEM2-ES
13 model, which also underpins global simulations (Osborne et al., 2015). Another crucial factor influencing crop
14 growth, the annual average CO: concentration, was set based on data provided by the Global Monitoring

15 Laboratory (GML) of the National Oceanic and Atmospheric Administration (NOAA).

16 The weather station for the evaluation experiments provided only daily temperature and precipitation data.
17 Consequently, additional meteorological variables, including wind, humidity, and longwave radiation, were
18 sourced from the ECMWF Reanalysis v5 (ERAS) dataset. However, the ERA5-generated shortwave radiation
19 (SW) for 2022 and 2023 disrupted the JULES-crop simulations leading to unrealistically high leaf area index
20 (LAI) values (exceeding 15). The overestimation of SW in ERAS has been widely reported, with studies
21 attributing it to the omission of aerosol variations and a limited capacity to simulate clouds and water vapour,
22 resulting in an overestimation of hourly SW in China by approximately 73.95 W m2 (He et al., 2021; Jiang et al.,
23 2020; Tong et al., 2023; Li et al., 2023). To address this, SW was bias-corrected using observations from the Os-
24 FACE experiment conducted in 2012.

25 Additionally, Os concentration observations were unavailable for the evaluation experiments. Hourly Os data from
26 the nearest station of the China National Environmental Monitoring Centre (https://www.cnemec.cn/) were used
27 instead. Aside from these driving data, e.g. weather variables, Os concentrations, CO: concentrations, and crop

28 stage dates, the evaluation simulations applied the same settings and parameters as those used in the calibration.
29

30
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1 3 Result
2 3.1 Calibration

All parameters calibrated using the Os-FACE experiment are listed in Tables 2 (PFT parameters) and 3 (crop
parameters). The calibration process for rice involved four main steps. First, leaf-level simulations were calibrated

by fitting simulated photosynthesis rates with observed values. Nitrogen content in leaves, stems, and roots was

3
4
5
6 obtained from observations and literature. Observed leaf temperature, internal CO: concentration, and stomatal
7 conductance were used as model inputs. Photosynthesis-related parameters (primarily PFTs parameters) were
8 adjusted based on discrepancies between observed and simulated photosynthesis rates. Notably, Os damage was
9

not considered during this step.

10 Second, canopy-level simulations were calibrated by determining the rice growth rate and partitioning of
11 assimilated carbon. Air temperature data were used to calculate the accumulated temperature required for rice

12 growth stages and the allocation of carbon to various carbon pools was also defined during this phase.

13 Third, model simulations were evaluated against observed LAI and crop height following the calibration of crop
14 physiology parameters. Lastly, rice yields were compared with observations under both ambient and elevated O3

15 concentrations.

16 The calibration process involved iteratively adjusting parameters manually until the model simulations fell within
17 the range of observed values. Additional adjustments were made to refine results, aiming to align them closer to
18 the central tendency of the observations. Although the number of simulations was constrained by computational
19 limitations, the process successfully achieved agreement with all available observations, ensuring no discrepancies
20  remained. While finer and finer incremental adjustments were not feasible due to computational limitations, the
21 approach effectively balanced precision and generalisation, capturing the essential crop observations without

22 overfitting.

23 Table 2 Calibrated plant functional types (PFTs) parameters representing rice.

Osborne et al.

Parameters This study The meaning of parameters
(2015)
n nl0_io 0.073 0.065 Leaf nitrogen concentration (kg N/kg C).
. Ratio of stem nitrogen concentration to leaf
Us ns_nl_io 1 0.52 ) )
nitrogen concentration.
. Ratio of root nitrogen concentration to leaf
Uyt nr_nl_io 1 0.46 ) ]
nitrogen concentration.
Scale factor relating Vcmax with leaf
ne neff_io 8E-4 1.28E-3 ) )
nitrogen concentration.
far fd_io 0.015 0.008 Scale factor for dark respiration.
Upper  temperature  parameter  for
Top tupp_io 36 38 .
photosynthesis (deg C).
Q10 leaf ql0_leaf io 2 2.1 Q10 factor for plant respiration.

24
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1 Table 3 Calibrated crop-related parameters representing rice.
Parameters Osborne etal.  This study The meaning of parameters
(2015)
TTemr tt_emr_io 60 50 Thermal time between sowing and
emergence (deg C d).
TTyeg tt veg 980* 1300 Thermal time between emergence and
flowering (deg Cd).
TTrep tt_rep 653%* 880 Thermal time between flowering and
harvest (deg Cd).
Aroot alphal _io 18.5 17.4
Agtem alpha2_io 19.0 17.4
Qeaf alpha3_io 19.5 17.9 Coefficient for determining partitioning.
Broot betal io —-19.0 =20
Bstem beta2_io -17.0 -16.7
Bieas beta3_io —-18.5 —-18.5
y gamma_io 20.9 24.5 Coefficient for determining specific leaf
8 delta_io -0.2724 —0.145 area (m? kg™!).
T remob_io 0.25 0.12 Remobilization factor. Fraction of stem
growth partitioned to reserve carbon.
fe,stem cfrac_s_io 0.5 0.404 Carbon fraction of dry matter for stems.
feroot cfrac_r_io 0.5 0.337 Carbon fraction of dry matter for roots.
feiear cfrac_1_io 0.5 0.399 Carbon fraction of dry matter for leaves.
K allol_io 1.4 1.27 Allometric coefficient relating stem carbon
A allo2_io 0.4 0.24 to crop height.
u mu_io 0.05 2 Allometric coefficient for calculation of
senescence.
v nu_io 0 6 Allometric coefficient for calculation of
senescence.
fyiela yield_frac_io 1.0 0.8 Fraction of the harvest carbon pool
converted to yield carbon (yield is the
economically valuable component of the
harvest pool e.g. kernel).
Cinit initial_carbon_io  0.01 0.01 Carbon in crop at emergence in kgC/m?.
DVliinie initial c¢_dvi_io 0.0 0.1 DVI at which the crop carbon is set to
initial_carbon_io.
DVisen sen_dvi_io 1.5 1.25 DVI at which leaf senescence begins.

2 * These parameters were spatially varying in Osborne et al. (2015).
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1 3.1.1 Photosynthesis

2 The potential leaf-level photosynthesis, unaffected by water stress and O3 effects, is calculated based on three

potentially limiting rates: Rubisco-limited rate (W), light-limited rate (W;), and the rate of transport of

4 photosynthetic products (W,) for Cs plants, as detailed in Clark et al. (2011).

5 Following Farquhar et al. (1980) and Collatz et al. (1991), several parameters in the photosynthesis scheme are
6  temperature-dependent, including the maximum rate of Rubisco carboxylation, V,, (mol CO, m™2 s), which is
7 critical for calculating both W, and W,. V,, is calculated assuming an optimal temperature range defined by Ty,
8 and T}y,

9 VmaxfT

m = [1 n e{o.3(Tc—Tupp)}][1 + e{03(T1ow=To)}]

10 where V4, is assumed to be linear dependent on the leaf nitrogen concentration, for Cs crop, V4, = n.n; and
11 n, is the scale factor, T, is the leaf temperature in °C, T,,p,, and Ty, are PFT-dependent parameters, and fr
12 depends on the parameter Gyqeqf, the factor by which plant respiration increases by a 10°C increase in
13 temperature:

14 01(Tc-25)

fr= q10,leaf

15 Changes in PFT parameters primarily influences the simulations of photosynthesis rate, which in turn affects the
16 accumulation of carbon in rice. In JULES-crop, the photosynthesis process is closely linked to the nitrogen content
17 of the crop. Leaf nitrogen concentration (n;) is a key factor impacting the photosynthesis rate and was estimated
18 based on literature sources (Fig.2a). As leaf nitrogen concentration declines from the vegetative to the ripening

19 stage, the rice plant’s capacity for carbon accumulation diminishes.

20 The ratio of the nitrogen content of roots relative to leaves (u,;) was also derived from literature (Fig.2b). This
21 ratio determines the nitrogen content in the roots, which further influences the respiration rate. The maturity stage
22 was excluded when calculating the average values for each stage. The values presented in Fig.2 were collected
23 from rice field experiments conducted across China over the past 20 years, encompassing several rice cultivars

24 grown in major rice-producing regions.
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Figure 2. Leaf nitrogen concentration (kg N/kg C) (left) and the ratio of root nitrogen concentration to leaf nitrogen

2 concentration (right). The grey dashed line represents the values selected for the simulation, while the dots indicate the

3 observed values.
4 The ratio of the nitrogen content of stems to leaves (i) was determined from the O3-FACE observations. The
5  ratio varied across growth stages, reaching its highest value during the maturity stage (Fig. 3). This is because at
6 maturity the leaves consist solely of yellow leaves, which have lower nitrogen content compared to the green
7 leaves present during earlier stages. The calibrated p; is the average value during the tillering, jointing, and
8 heading stages.
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10 Figure 3. Ratio of the stem nitrogen concentration to the leaf nitrogen concentration. The grey dashed line and the dots show

11 the values for the simulation and observations respectively.

12 The simulations of net leaf photosynthesis rate, using the default parameters from Osborne et al. (2015),
13 underestimated the observed values (Fig. 4a). Several parameters including n;, ne, far, Tupps and Gy jeqr, Were
14 calibrated to make the simulation results in better agreement with observations. The standard photosynthesis
15 model assumes that the upper temperature limit for C3 crops is 36°C. However, when the temperature exceeded
16 36°C, the simulated photosynthesis rates were still underestimated (Fig. 4b). This suggests that temperatures
17 above 36°C do not have a significant negative impact on the photosynthesis rate of rice, contrary to the

18 assumptions underlying the JULES-crop parameter set (Fig. 4c).
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Figure 5 shows that the simulated leaf photosynthetic rate starts to decrease at approximately 30 °C using the

calibrated temperature parameters while the simulated curves using the default T,,,,,, from Osborne et al. (2015)

4

5

6 reached the optimum temperature at about 29 °C. The exact optimum temperature for simulations varied with

7 the intercellular CO2 concentration of leaves (Ci). According to the experimental data collected from the

8 literature, the optimum temperature should be around 30 °C, depending on the environmental conditions such as

9  nitrogen content of leaves, light intensity, and CO2 concentration as well as growth stages. After calibration, the
10 response of leaf photosynthetic rate to leaf temperature was closer to observations both from this study and the

11 literature.
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The error bars were taken from the experimental results collected from published experiments that were conducted under

2 different environmental conditions (see Table S1).

3 3.1.2 Rice development and assimilate partitioning

4 The development status of rice is closely linked to its phenological progression and is represented by the
5 Development Index (DVI). The DVI increases as the ratio of accumulated thermal time to the prescribed thermal
6 time for each developmental phase rises. Initially, the DVI is set to —1 at sowing, increases to 0 at emergence,
7 completes accumulation before flowering at a value of 1, and reaches a value of 2 at maturity.

8 Once rice is sown, its developmental rate, defined by the DVI, depends on the prescribed thermal time, which

9 includes the thermal time between sowing, emergence, flowering, and maturity stages (Osborne et al., 2015). The

10 thermal time (T, s¢) can be calculated as follows:

0 forT <T,
T—T, forT, <T<T,
= T-T,
1 Ters (To—Tb)<1— ) forT,<T <T,
Tm_Ta
0 forT =T,

12 where T, Ty, T,, and T,, are air temperature, base temperature (8 °C), optimum temperature (30 °C), and

13 maximum temperature (42 °C) respectively.
14 The changes in the value of DVI during the simulation is determined by:

apvi (Ters/Temr  for —1<DVI<0
15 — =1 Ters/Toeg  for 0<DVI<1
Tor/Trep for 1<DVI<1

16~ Where Topyy, Ty, and Ty, represent the thermal time intervals between sowing and emergence, emergence and

17 flowering, and flowering and maturity, respectively.

18 The field experiment recorded the dates for sowing, transplanting, panicle initiation, heading, and maturity when
19 collecting samples. In China, most rice is grown in puddled fields after transplanting (Wang et al., 2017). Before
20  transplanting, rice is cultivated in nurseries and is not moved to the field until it has developed five or six leaves.
21 The prescribed thermal time was estimated based on the calculated thermal time from the observations (Table 4).
22 The observed development stages and crop characteristics are used to determine the thermal time required for the
23 model, ensuring that the following conditions are met: the model's predicted maturity stage coincides with the
24 actual timing observed in the experiment, and the DVI of crop characteristics from simulations agrees with the
25 observations. For example, the transplanting stage falls within the vegetative phase, so the DVI of observations

26 should fall within the range of 0 to 1.
27
28

29
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10

11
12
13

14
15
16
17
18

Table 4 Thermal time of rice between transplanting and maturity.

Period Thermal time (deg C d)

Seedling to transplanting 327.2

Transplanting to panicle initiation ~ 788.0

Panicle initiation to heading 427.2
Heading to maturity 590.0
Seedling to maturity 2132.4

Once the development rate is determined, the accumulated net primary productivity (NPP) of each time-step was
partitioned into four main carbon pools: root, stem (including structural stem and stem reserves), leaves, and the

harvest pool (including yellow leaves and harvested organs which are panicles for rice).

The partition coefficients (p) are calculated as follows (Osborne et al., 2015):

e"%"uot*ﬂraatn‘”

Proot = e~ root*BrootPVI + e~ stem+BstemDVI + e_aleaf+5leafDV1 +1
e~ stemtBstemDVI
Pstem = e~ %root*+BrootDVI 4 o—Astem*BstemDVI 4 efaleﬂftBlEﬂfDW +1
e_aleaf"'ﬁleafDW
Preas = e~ %root*+BrootDVI 4 o—@stem*BstemDVI efaleaf+ﬁleafDVI +1
1
Pharv =

e*aroot+ﬁroutDVI + e*“stem*ﬁstemDV} + e_aleaf+l;leafDVI +1

Six parameters, @roo¢> Astems Lieass Broots Bstem» a0d Bioqy, determine the partitioning process during the whole
growth period. And the net primary production accumulated through photosynthesis for each time step is

distributed to the four carbon pools according to the partition coefficients.

The parameters for carbon distribution were calibrated based on the dry weights of the stem, leaves, and panicles
from field experiments. Since root carbon is not included in the observations, its partitioning value is estimated
as a fraction of rice yield. Liu et al. (2023) suggested that the ratio of root dry weight to grain yield is approximately
0.13, although it can vary depending on the cultivar and nitrogen application rate. Figure 6 shows the fraction of

accumulated NPP partitioned into the different carbon pools using the calibrated parameters.
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Figure 6. Fraction of daily accumulated net primary productivity partitioned to roots (purple), stems (blue), leaves (yellow),

and harvested parts (red) of the crop as a function of development index (DVI; 0 = emergence, 1 = flowering, 2 = maturity)

oW

for rice. The black dashed line is the fraction based on parameters used in Osborne et al. (2015).

The accumulated carbon in different carbon pools directly affects the biomass of various rice organs. The model
calculates carbon accumulation and distribution, so the fractions of carbon-to-dry matter in the root, stem, and
leaf (f¢ roots fe,stem» aNd fg 1eqr) must be defined prior to running the model. The values used in our calibrated

simulations were taken from the observations and are listed in Table 2, along with the default values from Osborne

O 9 AN W

et al. (2015). The value of the carbon fraction impacts the root growth, crop height, and LAIL

10 3.1.3 LAI and crop height

11 Leaf Area Index (LAI) is an important attribute of crops, reflecting their capacity for carbon accumulation. In

12 JULES-crop, LAl is linked to the leaf carbon pool (Osborne et al., 2015):

C
13 LAl =22 s1.4
f cleaf

14 where Cj., indicates the amount of carbon in leaves, f; ;.o represents the carbon fraction of dry matter in leaves,

15 and SLA is the specific leaf area (m leaf kg™'):
16 SLA = y(DVI + 0.06)®

17 where y and & were determined by fitting the curve between DVI and SLA (De Vries et al., 1989) from
18 observations (Fig.7).
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2 Figure 7. Specific leaf area against development index. Coloured symbols indicate observations, and the colour shows the
data from different experiment fields. The black dashed line and the black solid line show the fit using parameters from

Osborne et al. (2015) and our calibrated parameters, respectively.

5 As green begin to turn yellow, leaf senescence starts and is represented by the parameter DV I,,,. The change from
6 green to yellow signals the transition of carbon from the leaf carbon pool to the harvest carbon pool. The transition

7 rate is simulated by reducing C, by a specific fraction (De Vries et al., 1989),
8 Charv = Charv + u(DVI — DVIsen)v : Cleaf

9  where u and u were determined by fitting the declining trend of carbon in green leaves following leaf senescence.

10 The simulation results are presented in Section 3.1.4.

11 The calculation of crop height (h) depends on the amount of carbon in the stem (Cszep,) (Hunt, 2012):

C
12 h= x(fsﬂ)'1
C,stem

13 where f_ oqf Tepresents the carbon fraction of dry matter in the stem, and k and 1 were determined by fitting the

14 relationship between h and stem dry matter of stems, which is equal to fcgﬂ (Fig.8).
C,;stem
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Figure 8. Stem dry weight against crop height. Coloured symbols are observations, and the colour shows the data from
different experiment fields. The black dashed line and the black solid line show the fit using parameters from Osborne et al.

(2015) and the calibrated parameters respectively.

5 Similar to leaf senescence, the carbon stored in the stem reserves is mobilised into the harvest carbon pool at a

6 rate of 10% per day, once the partition coefficient for stems drops below 0.01 (De Vries et al., 1989).
7 Charv = Chary + 0.1 - tCspem

8 where 1 represents the fraction of stem growth partitioned to reserve carbon, due to the lack of separate

9 observations of structural stem and stem reserves.

10 The observations did not include the carbon fraction, such as Cjeqr and Csgep, required for the model simulation;
11 therefore, these values were sourced from literature. All the literature data were derived from rice field
12 experiments conducted in China, involving several rice cultivars to enhance representativeness (Fig. 9). The
13 carbon content of panicles was also obtained from literature and combined with the carbon in yellow leaves during
14 the ripening phase to calculate the total carbon in the harvest pool. Additionally, the fractions of carbon-to-dry
15 matter were used to compare the simulation results with the observations, which only provided dry biomass data

16 for rice.
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Figure 9. Carbon content of the leaf, stem, root, and panicle during different crop development stages, where the average
means the value collected from the literature which only provided an average value for all stages during the rice growth. The

green, yellow, and blue dashed lines represent the value prescribed in the model for the fraction of carbon to the dry matter in

AW O -

the root, stem, and leaf respectively.

A9

3.1.4 Comparison with O3-FACE experiments

Figure 10 illustrates the changes in the main carbon pools throughout the entire growing period. The accumulated
carbon was reduced under elevated Os conditions, highlighting the detrimental impact of Os on crop growth. At

the maturity stage, total aboveground carbon under elevated Os was 22%-29% lower compared to ambient O3

O 0 3

conditions, as shown in the observations (Fig. 10(e)(f)). Carbon levels in both the leaf and stem exhibited a similar
10 decreasing trend due to the Os-induced damage to the photosynthesis process and carbon accumulation. The
11 simulations closely matched the observations, using the average carbon-to-dry biomass fraction for different
12 growth stages to convert observed data into carbon weights (Fig. 9). It is important to note that the carbon fraction
13 varies with cultivar and growing environment. To align the model results, which are based on carbon weight

14 instead of dry weight, with the observed data, the average carbon-to-dry biomass ratio across all stages was applied.
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15

16 Figure 10. Leaf, stem, and total aboveground carbon against day of year under ambient and elevated ozone conditions. Box
17 plots are observations, whereas grey, green, blue, and red lines show the simulations results using parameters from Osborne
18 et al. (2015) and calibrated parameters under ambient ozone conditions, including high and low ozone sensitivity under

19 elevated ozone conditions, respectively., with units of g m2.
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There are two parameters in the simulations that directly relate to the impact of O3 on the rice (Clark et al., 2011;
Sitch et al., 2007) (Table 5).The reduction of the net photosynthesis rate was determined by the value of the
instantaneous leaf uptake of O3 above the threshold Fy, i, multiplied by a sensitivity parameter a (Pleijel et al.,
2004). Observations using three planting densities of rice observations were used to calibrate the model. As can

be seen from Fig.11, the high sensitivity and low sensitivities coincided with the upper and lower boundaries of

AN L AW N =

relative yield (RY) which is calculated as follows:

_Yo,

RY =
7 Yo

8 where Y, represents the crop yield including O3 damage and Y, represents the crop yield with no effects of Os.

9 In the Fig.11, AOT40 was used to represent the O3 concentrations in the environment,

n
10 AOT40 = Z([03]" ~0.04)
i=1

11 where [0;]; stands for the hourly O3 concentration level (unit: ppm h) during daylight hours (08:00-19:59), and

12 n represents the total hours of the growing season.

13 Table 5 Ozone parameters calibrated for high and low sensitivity to ozone damage.

Parameters Osborne et High Low The meaning of parameters

al. (2015) sensitivity  sensitivity

Foycrit fl Os ctio 5.0 7.0 8.0 Critical flux of O; to vegetation
(nmol m? s7!).
a dfp_dcuo_io  0.25 1.2 0.7 Plant type specific Os sensitivity
parameter (nmol m? s™).
14
1.00 —— Obs: High Density
—— Obs: Medium Density
—— Obs: Low Density
0.95 N . Sim: High Sensitivity
»\} —--- Sim: Low Sensitivity
0.90 1
T
[}
2
Loss
k&
[}
o
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4 6 8 10 12 14
15 AQOT40 (ppm h)

16 Figure 11. Relative yield against AOT40 (ppm h). Green, orange, and blue dashed lines show the relative yield of rice
17 planted in high, medium, and low density. The grey dotted and dashed lines show the simulations of relative yield with high

18 and low sensitivity to ozone damage respectively.
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Figure 12 illustrates the height and LAI of rice under both elevated and ambient Os conditions. The difference in
LAI and height between these two environments underscores the negative impact of Os on rice carbon
accumulation. Post-calibration, the simulations for both LAI and height align well with observational data (Fig.
11 (a)(c)). Prior to the new calibration, simulations with default parameters from Osborne et al. (2015)
significantly underestimated both parameters, largely due to the underestimated photosynthesis rate (Fig. 4). This
underestimation led to reduced carbon assimilation and storage, resulting in insufficient carbon allocation to stems

and leaves, which directly impacted LAI and height. It is worth noting that all plots comparing simulation and

0 N N L A W N =

observation begin after the model’s initialisation phase.
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10 Figure 12. Crop height (cm) and green leaf area index (LAI) are shown verses day of year under ambient and elevated ozone
11 conditions. Box plots show observations, and grey, green, blue, and red lines show the simulations using the default
12 parameters from Osborne et al. (2015) and newly calibrated parameters under ambient ozone conditions, and high and low

13 ozone sensitivity for elevated ozone conditions, respectively.

14 3.2 Evaluation

15 Figure 13 compares simulated and observed values of leaf carbon, stem carbon, total aboveground biomass, and
16 rice height for the years 2022 and 2023, based on data from an independent FACE experiment (see section 2.2).
17 The observations were limited to heading and maturity stages. These observations were compared to our newly
18 calibrated JULES-crop model simulations using these FACE observations. Os related parameters were applied to

19 model the impact of Os on rice biomass and carbon content.

20 The simulated stem carbon was marginally lower than the average observed values (Fig.13 (c)(d)), while total
21 aboveground biomass was overestimated when using low Os sensitivity parameters (Fig.13 (e)(f)). These
22 variations can be attributed to differences in the carbon allocation between the calibration and evaluation

23 experiments. The seeding depth notably influenced stem weight since stems thickened nearer the root, and only
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1 aboveground stems were harvested and measured. Consequently, deeper seeding resulted in a smaller fraction of
2 stem biomass relative to total aboveground biomass (Gong et al., 2023). This slight underestimation of stem

3 carbon was also evident in the simulation of crop height, which was similarly affected by seeding depth.

4 The total biomass observed in the evaluation experiment surpassed that measured in the Os-FACE experiment,
5 particularly with a notably larger stem weight. Crop parameters were calibrated using data from the Os;-FACE

6 experiment, but differences in agronomic practices across experiments may have introduced uncertainties.
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Figure 13. Leaf, stem, total aboveground biomass, and crop height against day of year for 2022 and 2023. Box plots are

9 observations, and blue and orange lines show the simulation results using low and high ozone sensitivity, respectively.

10 While the simulated crop height fell within the range of observed values, it was marginally lower than the average

11 measured height (Fig.13 (g)(h)). Despite variations in seeding practices between the calibration and evaluation
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1 field experiments, the carbon distribution and levels aligned well with the observations. Overall, JULES-crop

2 demonstrated the ability to accurately predict rice growth and carbon allocation across various carbon pools.

3 3.3 Limitations

While this study provides a rice model calibration based on the novel Os-FACE experiments, several limitations
must be acknowledged. The calibrated thermal time was specific to a particular location and should be recalculated
using local air temperature and rice phenology data if simulations are performed for other regions. For example,
the evaluation experiment conducted in 2023 in a nearby county exhibited a relatively higher thermal time than

the calibration experiment, primarily due to the longer growth duration. Furthermore, rice growth in the 2022 and

© 0 9N N wn A

2023 evaluation experiments was severely affected by crop pests and diseases at the maturity stage, leading to

10 significant yield loss. As a result, only crop growth characteristics were used to validate the model.

11 Furthermore, although the model was calibrated and evaluated using independent experimental data, directly
12 applying the parameters to global simulations may introduce significant uncertainties. As such, global simulations
13 using the parameters derived in this study should incorporate further evaluations to verify model performance

14 (Miiller et al., 2017).

15 4 Conclusion

16 This study marks a significant advancement in modelling rice growth and ozone (Os) effects by providing the first
17 calibration of the JULES-crop model using rice-specific data from Free Air Concentration Enrichment (Os-FACE)
18 experiments. These experiments offer a realistic field setting to assess the impacts of Os on crops, addressing
19 limitations of alternative setups such as open-top chambers (OTC) by simulating more natural environmental
20 conditions. Initial simulations with the default rice parameters in JULES-crop revealed substantial
21 underestimation of carbon accumulation throughout the growth cycle. Calibration using the most recent Os-FACE

22 data significantly improved the model's ability to replicate rice physiology, phenology, yield, and O; sensitivity.

23 The calibration process involved adjusting key parameters to align simulations with observed data, including leaf
24 area indices, crop height, yield, and the biomass of leaves, stems, and panicles. The model was refined to
25 accurately represent yield reductions caused by elevated Os levels. Evaluation against independent field
26 experiments demonstrated good agreement between simulated outcomes and observed results, affirming the

27 model's robustness.

28 This study deepens our understanding of Os’s impact on rice production and delivers a newly calibrated model
29 suitable for assessing future climate scenarios and Os effects. The study lays the groundwork for future agricultural
30  research aimed at mitigating Os-induced yield losses, providing a valuable framework for enhancing food security

31 as Os levels continue to rise.
32
33

34

20
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Code availability. This study used the JULES (Joint UK Land Environment Simulator) version 7.4, which was
released in November 2023. The model is available for download from the UK Met Office Science Repository
Service (MOSRS) (https://code.metoffice.gov.uk/trac/jules), with registration required. For simulating

photosynthesis rates, we used the Leaf Simulator (Williams et al., 2019), which is accessible at

[ T N S

https://code.metoffice.gov.uk/trac/utils.

Data availability. The calibrated driving data in this study are openly available in Zenodo at https://doi.org/
10.5281/zenodo.14008269. The Os-FACE data that supports the calibration of this study is available on request

from the corresponding author Lianxin Yang (Ixyang@yzu.edu.cn). The FACE data for evaluation is available on

O 0 9

request from the author Yu Jiang (yujiang@njau.edu.cn).
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